

You have optimised the design, now it's time to build it.

Different ways to apply AM in your business

Alessandro Consalvo – Renishaw SpA

22 September 2016 – Nanoinnovation 2016 – Multifunctional technologies for 2D/3D printing of smart components

Renishaw

- World leading metrology company founded in 1973.
- Skills in measurement, motion control, spectroscopy and precision machining.
- 2011 MTT acquisition making Renishaw the only UK manufacturer of metal additive manufacturing systems.

Agenda

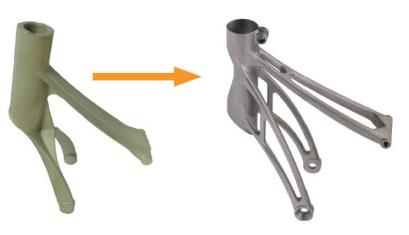
Myths and realities about metal 3D printing Applying AM in your business

Application examples

Agenda

Myths and realities about metal 3D printing

Applying AM in your business


Application examples

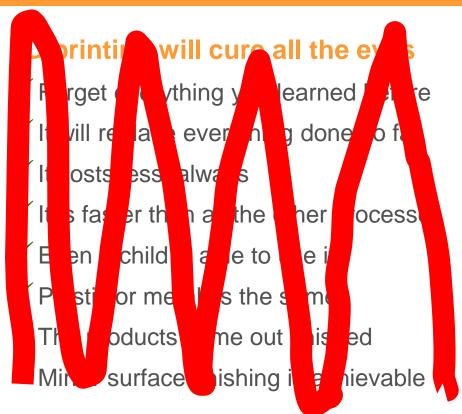
Why everyone is interested in metal 3D printing...

Additive manufacturing (AM) benefits

- ✓ Innovative product designs
- ✓ Complex internal details
- ✓ Lightweight, optimised forms
- ✓ Efficient material usage with minimal waste
- ✓ Improved cooling & heat transfer
- ✓ Customisation for specific applications
- ✓ Short lead times
- ✓ Build from CAD with no special tooling

Cast aluminium bike seat post bracket and optimised titanium bracket.

A weight reduction of 44% was achieved by optimising the design for AM.



What should I know about metal 3D printing?

3D printing is a part of the process

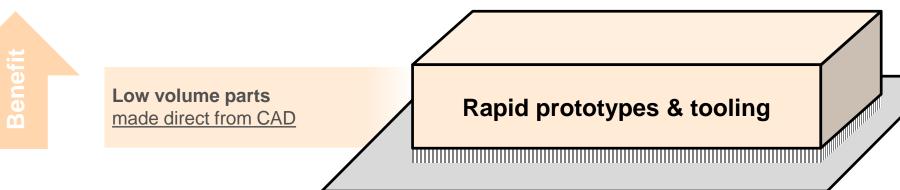
- ✓ You will need all your knowledge
- It will support what you already do
- It gives a high added value
- ✓ It reduces the process end-to-end time
- ✓ Professional profiles at different levels

Onstalunginium inite status to the second status in the sec

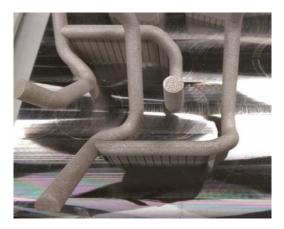
Agenda

Myths and realities about metal 3D printing Applying AM in your business

Application examples



Getting the most from AM


Why use AM for prototype & tooling development?

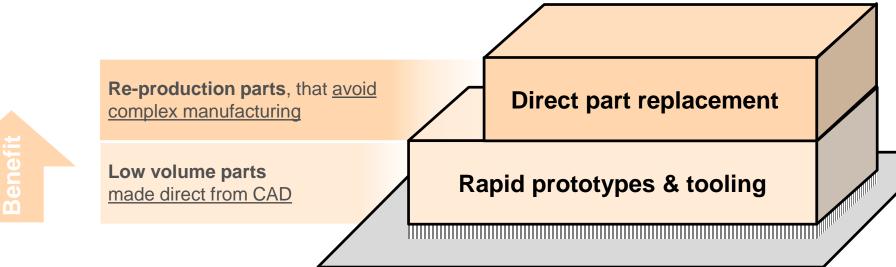
- Prototypes help to de-risk system designs at low cost
- No intention to use AM to make production parts
- AM avoids tooling costs whilst the design is still in flux
- AM enables cost-effective manufacture of complex tooling

Examples: Rapid prototypes & tooling

Complex bar locators for part handling

Conformal mould tooling for rapid cooling

Prototype exhaust nozzle



Getting the most from AM

Why use AM for direct part replacement?

- Gain experience with AM in low risk applications
- Develop a supply chain for AM parts

Example: Direct part replacement

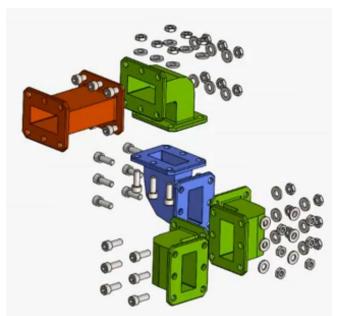
Getting the most from AM

Why combine parts using AM?

• Simpler assembly & fewer joints / bonds

Complex parts that <u>simplify</u> <u>assembly & enhance reliability</u>

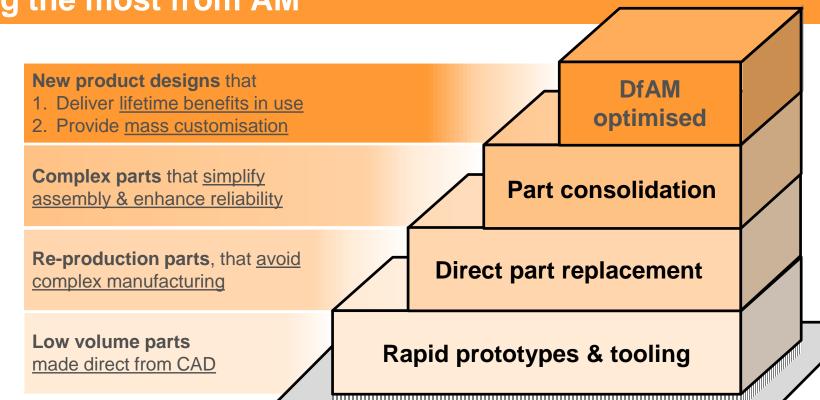
Re-production parts, that <u>avoid</u> <u>complex manufacturing</u>


Low volume parts made direct from CAD **Part consolidation**

Direct part replacement

Rapid prototypes & tooling

Example: Part consolidation


Microwave guide: from 77 to 1 piece Reduced weight and improved performances

Getting the most from AM

Examples: DfAM optimised

Customised cranio-facial implant

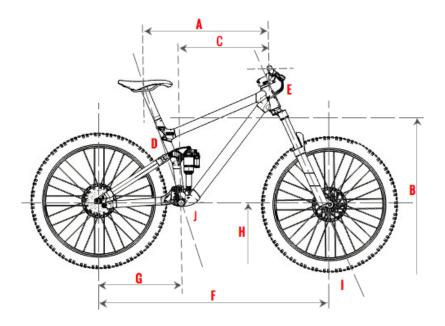
Light-weight, efficient hydraulic manifold

Increased efficiency heat exchanger

Agenda

Myths and realities about metal 3D printing Applying AM in your business

Application examples



Database to CAD Model

- 225.720 Geometries Possible
- 11 Individual Titanium Lugs
- 8 Carbon Fibre Tubes
- **1** Button
- 20 Seonds

ROBOLRIKECO	HOME	ABOUT US	TECHNOLOGY	FRAMES	NEWS	MEDIA	CONTACT	0
Customer Input								
Name		Mike Adams						_
Email		mikeadams@hie	rta. biz					
Height (mm)		1810						
inside Leg (mm)		838						
Arm Span (mm)		1810						
Engine Output								
Reach (mm)			445					
Seat Tube Lenght(mm)			472					
Effective Top Tube (mm)			643					
Standover Height(mm)			744					
Head Tube Lenght(mm)			125					
Wheelbaseimm)			1194					
Chainstay Lenght(mm)			430					
Bottom Bracket Drop (mm)			10					
Head Tube Angle(mm)			65.5					
Seat Tube Angleimm)			72					
Stack Height (mm)			608					

A new business model

CAD model to the frame

- Acceptance of the CAD model by the customer
- Creation of the lugs set with an AM machine
- Bespoke length unidirectional carbon fiber tubes
- Assembly of the frame

Workshop VI 22 September 15:00

Optimising, redesigning and preparing to build: steps to additively manufacture mechanical parts

- real cases of optimization and redesign of parts for AM
- live demonstration of QuantAM, a new software tool to prepare files for a Renishaw additive manufacturing process
- orientating, supporting and slicing a 3D model before is manufacture

Thanks for your attention.

For more information visit www.renishaw.it or call us at 0119661052

